博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
红黑树
阅读量:7205 次
发布时间:2019-06-29

本文共 4491 字,大约阅读时间需要 14 分钟。

  hot3.png

一、本文内容

以一种简明易懂的方式介绍红黑树背后的逻辑实现2-3-4树,以及红黑树的插入、删除操作,重点在2-3-4树与红黑树的对应关系上,并理清红黑树相关操作的来龙去脉。抛弃以往复杂的实现,而分析红黑树的一种简单实现LLRB。

 

 

二、算法应用

红黑树,给人以强烈的第一听觉冲击力——红与黑,好像很高端的感觉。事实上的确如此,红黑树是一种高级数据结构,在C++、Java的标准库里作为set、map的底层数据结构实现,以及linux中进程的公平调度。

 

 

三、2-3-4树

标题是红黑树,为什么讲2-3-4树?因为红黑树就是2-3-4树的一种等价形式,更准确地来说,我们用红黑树来完成2-3-4树的各种操作(如插入、删除)。原因就是2-3-4树的实现即维护太麻烦。所以理解2-3-4树才能真正理解红黑树。而历史就是这么发展的,了解过去,现在的一切才有了意义。算法导论关于红黑树这一节就忽略了这一点,让人知其然而不知其所以然。

 

OK,暂时先忽略复杂的红黑树,从简单的2-3-4树开始。

 

1、定义

 

2-3-4树是一种泛化的BST,它的每个结点允许1,2或者3个键(key),那么对应的有三种结点:

2-node:一个key,两个孩子;

3-node:二个key,三个孩子;

4-node:三个key,四个孩子。

注:k-node表示有k个链接(link)。泛化的BST还有2-3树,B树等。

 

从图中可以看出2-3-4树的另一个性质:它是完全平衡的(等高),即从根结点到叶子结点距离相等。

 

2、插入操作

2-3-4树本身就是一种查找树(中序遍历有序),故其查找操作同二叉查找。

 

2-3-4树的插入操作类似二叉查找树,先是查找操作失败(从根结点查找到叶子结点),然后在底部的叶子结点插入。

因为2-3-4树的结点有三种类型,所以操作有点差异。对于2-node和3-node,分别直接插入可变成3-node,4-node;但是对于4-node若直接插入则违反了定义。在4-node插入之前,先分裂4-node成2个2-node,再将待插入的key插入对应的2-node。 如下图,H查找失败,在H插入4-node(由三个key F、G、J组成)之前,先对该4-node分裂(将三个key的中间值提上父节点,剩余的二个key分别作为中间key的左右孩子),然后再将H插入2-node J中。这样操作的结果是查找到达底部叶子结点时,始终是2-node或者3-node。

 

插入算法思想:自下而上的算法由原作者Bayer在1972年提出,自上而下的算法由Guibas-Sedgewick(红黑树这个名字来源于他们)在1978年提出,然后30年后也就是2008年Sedgewick教授又改进了红黑树的操作,也就是后面要介绍的LLRB。

 

自上而下的算法思路是,从根结点向下的查找过程中,遇到4-node就分裂,最后在底部的叶子结点插入。

那么为什么遇到4-node就分裂呢?4-node不是2-3-4树的一种合法结点类型吗?

答案可以从后面LLRB的算法思路可以得出。

 

因为遇到4-node就分裂就保证了当前结点不是4-node,则分裂孩子的4-node有两种情形:

分裂4-node的case 1

 

 

分裂4-node的case 2

注:上面的变换在树中任意位置都成立。

 

 

下面两张图是完整的插入过程(只有分裂结点类型为4-node的根结点才会导致树高增1):

 

 

 

 

3、平衡性分析

2-3-4树的树高在最坏情况下为lgN(所有结点都是2-node型),最好情况下为lg4 N = 1/2 lgN(所有结点都是4-node型),2-3-4树的查找、插入操作都是lgN。

 

 

四、红黑树

 

终于到了高富帅——红黑树。。。

从2-3-4树的介绍可以看出,对2-node、3-node、4-node的不同数据类型进行转换,但所涉及的大部分任务使用这种直接的表示方法来实现并不方便。所以可以用

一种统一的方式完成转换,而只需很小的开销。这就是红黑树存在的意义,既有BST的标准搜索过程,又有2-3-4树的简单插入平衡过程。

 

下面介绍LLRB(Left-leaning red-black trees),而不是标准的红黑树。

1、定义

LLRB有三个特点:

(1)用BST来表示2-3-4树;

(2)用红边(红链接)来连接2-node来表示3-node和4-node(如下图);

(3)3-node必须是向左倾斜的(两者的大者作为根)。

 

LLRB相对于标准的RB多了特点3,在标准的RB中右向倾斜的红链接是允许的。对于特点2,在物理上用一个bit(红或黑)来存储以表示指向该结点的红链接。

红链接来连接3-node或者4-node的内部key,而黑链接则连接外部的key;为了理解,可以消除红链接并将它们连接的结点都折叠起来(即将看做红链接连

接的点缩为一个点),则可以看出黑链接个数不变。

2-3-4树与红黑树是一一对应的关系

 

 

且上下关系中不允许2个连续的红边

 

由特点3可以推出LLRB的一个特性,红黑树与2-3-4树一一对应。

 

2、插入算法

同样地,在LLRB中查找操作同BST。

在插入之前要知道一个操作:旋转。它有两种情况:左旋,右旋。

 

 

左旋 右旋

 

插入算法思路:即前面介绍的2-3-4树

具体实现时,插入一个结点时,始终是红结点,即用红边链接该结点。对于2-node、3-node直接插入(k-node有k个插入点),如违反上面的左红链接和连续的红链接,则旋转作调整。对于4-node(左右都为红链接),先分裂,物理实现是一个翻转(左右红链接变黑,父链接变红)。

2-node插入的两种case

 

 

3-node插入的三种case

 

 

 

4-node分裂操作

 

 

由4-node的分裂可知黑高度不变,分裂操作即翻转在图片上对应为红链接向上传递。

在介绍2-3-4树时,4-node分裂操作有两种情况,4-node的parent是2-node和3-node;再结合k-node有k个插入点,则总共有6种情况。

4-node的分裂case 1

 

 

 

4-node的分裂case 2

 

 

看了上面两幅图后,也许会让人觉得红黑树太复杂了,这么多case,其实不然,在LLRB实现中只有两种操作:旋转、翻转。旋转的目的是保持平衡,翻转的目的是分裂4-node。

看了下面的LLRB插入算法,你就会明白上面4-node的翻转、旋转其实是分开的两个过程(翻转自上而下,旋转自下而上),只是为了统一这个完整的过程而画在了一起,才会有那么多case。

 

LLRB的插入算法:

首先结合2-3-4树的插入算法思路,先自上至下查找(遇到4-node则翻转),然后在底部叶子结点插入,因为在自上至下的过程中,可能会产生不满足LLRB的性质的情况,故插入结点后需要自下至上调整以恢复LLRB性质。

下图是插入算法的核心代码,第2是分裂即翻转,第1是插入操作,第3、4是调整。

 

从插入算法可以看出,如果自下而上再分裂4-node,则会出现它的parent也可能是4-node,祖父结点也可能是4-node;我们可以一直向上分裂,这也正是上面提到的自下而上的思路(原作者:Bayer);而更简单的方法是,在沿树向下的过程中,遇到4-node就分裂,这也正是自上而下与自下而上的区别。

插入算法的核心代码

 

上图的核心代码按照自上而下和自下而上的顺序放入BST的插入(递归版本)操作中即得到下图的完整的插入算法。

注:分裂(即翻转)是自上而下,所以放在递归之前;调整(即旋转)是自下而上,所以放在递归之后。

完整的插入代码

 

 

如果将分裂操作放到递归之后,也就是先自上而下查找,插入结点,然后自下而上调整也可同样完成插入操作而不破坏LLRB的性质。

2-3树的插入操作

 

 

其实上述描述的就是2-3树的插入操作,它与2-3-4树的插入的区别在于:2-3树先插入,再分裂(down)、调整(up);2-3-4树先分裂(down),再插入、调整(up)。又因为插入总是在最后一层进行,故翻转的位置决定了对应树的实现。

这也是为什么2-3-4树叫top-down,而2-3树叫bottom-up。

 

3、删除算法

LLRB的删除类似于插入,只不过处理刚好相反。插入、删除都有临界点:插入4-node,删除2-node,对临界点的操作都会引起突变,因为它们会破坏LLRB的性质(黑高度)。

所以同插入一样,先从上至下查找,如果查找在3-node或4-node结束,则直接删除;

3-node和4-node的删除

 

 

对于2-node的删除同4-node的插入相反,2-node的删除是先合并2个2-node为1个4-node,然后再安全地删除对应的2-node中的key。

同样地,因为parent不为2-node(遇到即合并),再结合兄弟结点的2、3、4-node,则删除总共有6种情况(2-node的兄弟为2-node, 3-node,4-node,父亲为3-node,4-node,总共2*3=6种情况)。同样,实际的删除实现也没这么复杂。

2-node的删除(其实合并和借都是借,2-node不能直接删除,先合并或者借再删。)

 

 

在介绍删除任意一个结点时,先分析删除树中最小的结点。因为它是删除任意结点的一部分,后面可以看出来。

首先,为了保证可以直接删除最小的某个结点,需要假设当前结点h或者h.left是红色链。

然后从上而下查找过程中,2个2-node要变为1个4-node,则需反向翻转(红色父链接变黑,黑色子链接变红),

为了将红链从上向左子树传递(删除红结点,不改变黑高度),需保证h为红,h.left和h.left.left为黑;

当h.left和h.left.left都为黑时,

如果h.right.left为红,则要从右边借兄弟(下图case 2),如果h.right.left为黑,则不需要(下图case1)。

注:在翻转的同时,右子树可能会产生连续的红链,则需调整。

case 1

 

 

 

case 2

 

 

 

红链向左移动                   红链向左移动对应的example

 

 

deleteMin的实现

 

 

 

 

deleteMin的example

 

 

完成了deleteMin就完成了LLRB的删除操作的一大半。现在是删除LLRB的任意一个key,

自上而下查找过程中,左边查找用moveRedLeft;右边查找用moveRedRight;直到最后的底部叶子结点,直接删除即可;同样,自下而上调整。

 

怎样将delete操作归约到delteMin去呢?算法导论提供的一个技巧是:replace,deleteMin(即用后继的key代替当前的key,再删除右孩子的最小结点)。

删除技巧

 

 

 

完整删除代码

 

 

 

参考:

《算法导论》

《algorithm in c》

 

PS:9.9忆山东兄弟,必登高望远,一览纵山小。

转载于:https://my.oschina.net/mskk/blog/793263

你可能感兴趣的文章
养成逻辑的习惯
查看>>
jQuery attributes(上)
查看>>
ISO8583报文协议(转)
查看>>
Android文本框实现搜索和清空效果
查看>>
Logic-算法-XX部队XX侦察队员
查看>>
海量数据(数据量比较大时)的处理分析
查看>>
printf 规定数据输出方式
查看>>
Facebook Graph API(2)--读取数据之picture
查看>>
使用分析服务多维模式建立简单的分析模型
查看>>
Oracle Real Application Testing diagram
查看>>
IoC容器Autofac(2) - 一个简单示例(附demo源码)
查看>>
桥接模式 - 设计模式学习
查看>>
Google Maps Android API v2 (2)- 地图对象
查看>>
MySQL 5.5 手册下载
查看>>
hdu 1300(dp)
查看>>
POJ 1159 - Palindrome 优化空间LCS
查看>>
CH BR8(小学生放假了-clock()/CLOCKS_PER_SEC-斜率优化常错集锦)
查看>>
N!末尾有多少个零
查看>>
【优先队列】HDU 1873——看病找医生
查看>>
SQL 时间处理
查看>>